Individual-specific, sparse inverse covariance estimation in generalized estimating equations

نویسندگان

  • Qiang Zhang
  • Edward H. Ip
  • Junhao Pan
  • Robert Plemmons
چکیده

This paper proposes a data-driven approach that derives individual-specific sparse working correlation matrices for generalized estimating equations (GEEs). The approach is motivated by the observation that, in some applications of the GEE, the covariance structure across individuals is heterogeneous and cannot be appropriately captured by a single correlationmatrix. The proposed approach enjoys both favorable computational and asymptotic properties. Simulation experiments and analysis of intensivelymeasured longitudinal data on 158 participants collected from a dietary and emotion study are presented. © 2016 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

JPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

Joint mean and covariance estimation with unreplicated matrix - variate data ∗

It has been proposed that complex populations, such as those that arise in genomics studies, may exhibit dependencies among observations as well as among variables. This gives rise to the challenging problem of analyzing unreplicated high-dimensional data with unknown mean and dependence structures. Matrixvariate approaches that impose various forms of (inverse) covariance sparsity allow flexib...

متن کامل

High Dimensional Inverse Covariance Matrix Estimation via Linear Programming

This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such “sparsity”. The proposed method can be computed using linear pro...

متن کامل

Minimax Estimation of Bandable Precision Matrices

The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016